voyage-3.5 and voyage-3.5-lite: improved quality for a new retrieval frontier

https://news.ycombinator.com/rss Hits: 5
Summary

TL;DR – We’re excited to introduce voyage-3.5 and voyage-3.5-lite, the latest generation of our embedding models. These models offer improved retrieval quality over voyage-3 and voyage-3-lite at the same price, setting a new frontier for price-performance. Both models support embeddings in 2048, 1024, 512, and 256 dimensions, with multiple quantization options enabled by Matryoshka learning and quantization-aware training. voyage-3.5 and voyage-3.5-lite outperform OpenAI-v3-large by 8.26% and 6.34%, respectively, on average across evaluated domains, with 2.2x and 6.5x lower respective costs and a 1.5x smaller embedding dimension. Compared with OpenAI-v3-large (float, 3072), voyage-3.5 (int8, 2048) and voyage-3.5-lite (int8, 2048) reduce vector database costs by 83%, while achieving higher retrieval quality. Today, we’re excited to introduce voyage-3.5 and voyage-3.5-lite, which maintain the same sizes as their predecessors—voyage-3 and voyage-3-lite—but offer improved quality for a new retrieval frontier. As we see in the figure below, voyage-3.5 improves retrieval quality over voyage-3 by 2.66%, and voyage-3.5-lite improves over voyage-3-lite by 4.28%—both maintaining a 32K context length and their respective price points of $0.06 and $0.02 per 1M tokens. voyage-3.5 and voyage-3.5-lite also outperform OpenAI-v3-large by 8.26% and 6.34%, respectively, with voyage-3.5 also outperforming Cohere-v4 by 1.63%. voyage-3-lite achieves retrieval quality within 0.3% of Cohere-v4 at 1/6 the cost. Both models advance the cost-performance ratio of embedding models to a new state-of-the-art through an improved mixture of training data, distillation from voyage-3-large, and the use of Voyage AI rerankers.Matryoshka embeddings and quantization. voyage-3.5 and voyage-3.5-lite support 2048, 1024, 512, and 256 dimensional embeddings enabled by Matryoshka learning and multiple embedding quantization options—including 32-bit floating point, signed and unsigned 8-bit integer, and binary...

First seen: 2025-05-24 19:41

Last seen: 2025-05-24 23:42