New Adaptive Optics Shows Details of Our Star's Atmosphere

https://news.ycombinator.com/rss Hits: 26
Summary

Scientists develop new optical system that removes blur over fine-structure in the Sun’s corona, revealing clearest images to date BOULDER, CO, Tuesday, May 27, 2025 – The Sun’s corona—the outermost layer of its atmosphere, visible only during a total solar eclipse—has long intrigued scientists due to its extreme temperatures, violent eruptions, and large prominences. However, turbulence in the Earth’s atmosphere has caused image blur and hindered observations of the corona. A ground-breaking recent development by scientists from the U.S. National Science Foundation (NSF) National Solar Observatory (NSO), and New Jersey Institute of Technology (NJIT), is changing that by using adaptive optics to remove the blur. As published in Nature Astronomy, this pioneering ‘coronal adaptive optics’ technology has produced the most astonishing, clearest images and videos of fine-structure in the corona to date. This development will open the door for deeper insights into the corona’s enigmatic behavior and the processes driving space weather. Most Detailed Coronal Images to Date Revealed Funded by the NSF and installed at the 1.6-meter Goode Solar Telescope (GST), operated by NJIT’s Center for Solar-Terrestrial Research (CSTR) at Big Bear Solar Observatory (BBSO) in California, “Cona”—the adaptive optics system responsible for these new images—compensates for the blur caused by air turbulence in the Earth’s atmosphere —similar to the bumpy air passengers feel during a flight. “The turbulence in the air severely degrades images of objects in space, like our Sun, seen through our telescopes. But we can correct for that,” says Dirk Schmidt, NSO Adaptive Optics Scientist who led the development. Among the team’s remarkable observations is a movie of a quickly restructuring solar prominence unveiling fine, turbulent internal flows. Solar prominences are large, bright features, often appearing as arches or loops, extending outward from the Sun’s surface. This image of a prominence abo...

First seen: 2025-06-01 00:29

Last seen: 2025-06-02 02:34