The QMA Singularity

https://news.ycombinator.com/rss Hits: 12
Summary

A couple days ago, Freek Witteveen of CWI and I posted a paper to the arXiv called “Limits to black-box amplification in QMA.” Let me share the abstract: We study the limitations of black-box amplification in the quantum complexity class QMA. Amplification is known to boost any inverse-polynomial gap between completeness and soundness to exponentially small error, and a recent result (Jeffery and Witteveen, 2025) shows that completeness can in fact be amplified to be doubly exponentially close to 1. We prove that this is optimal for black-box procedures: we provide a quantum oracle relative to which no QMA verification procedure using polynomial resources can achieve completeness closer to 1 than doubly exponential, or a soundness which is super-exponentially small. This is proven by using techniques from complex approximation theory, to make the oracle separation from (Aaronson, 2008), between QMA and QMA with perfect completeness, quantitative. You can also check out my PowerPoint slides here. To explain the context: QMA, or Quantum Merlin Arthur, is the canonical quantum version of NP. It’s the class of all decision problems for which, if the answer is “yes,” then Merlin can send Arthur a quantum witness state that causes him to accept with probability at least 2/3 (after a polynomial-time quantum computation), while if the answer is “no,” then regardless of what witness Merlin sends, Arthur accepts with probability at most 1/3. Here, as usual in complexity theory, the constants 2/3 and 1/3 are just conventions, which can be replaced (for example) by 1-2-n and 2-n using amplification. A longstanding open problem about QMA—not the biggest problem, but arguably the most annoying—has been whether the 2/3 can be replaced by 1, as it can be for classical MA for example. In other words, does QMA = QMA1, where QMA1 is the subclass of QMA that admits protocols with “perfect completeness”? In 2008, I used real analysis to show that there’s a quantum oracle relative to whi...

First seen: 2025-09-28 20:29

Last seen: 2025-09-29 07:30